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dB/m. But calcite is preferable since the net gain (9.9857 REFERENCES

dB/m) is better than with titania (7.4596 dB /m). This is,. ,.
so because it can be shown that the loss factor is mini- [1] N. S, Kapany and J. J. Burke, (lpficd Waoegdes. New York:

mized around ~,= 3, a fact true for isotropic case also [2].
Academic Press, 1972, pp. 293–3 18.

It infers that a material with {rm3 and am2 is most
[2] E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and

dielectric waveguldes for long distance optical transmission and

suitable for best output. lasers,’” Bell SysL Tech. J., vol. 43. pp. 1783-1809, July 1964.

Toroidal Resonator with a Conducting
Separating Wall

RUDOLF DEUTSCH

Abstract—The exact solution of Maxwell’s equations for electromag-
netic waves in toroidal resonators with a separating wafl was obtained. The

components of the intensities of the electric and magnetic fields, the

charge densities on the toroidal sorface and on the separating wall, the

magnetic field lines, and the dispersion relation were determined. Both the

empty torus and the coaxial torus were stodied. A generrd mettml to
determine in au easy way the magnetic field fines from the stroctiwe of the

Hertz vector is given.

I. INTRODUCTION

I T WAS RECENTLY shown [ 1]–[3] that the vectorial

Helmholtz equation for electromagnetic waves in

toroidal coordinates can be reduced to the scalar Helm-

holtz equation, and solutions of this equation for some

cases important in electronics and in plasma physics were

obtained. It is possible to get an exact solution with the

periodicity of 4W [2]. This corresponds to an empty or

coaxial torus containing a conducting separating wall

(Fig. 3), In this paper, we shall study this solution in

detail.
In the first part of the paper, we show that it is possible

to introduce a generating function, related to the Carte-

sian components of the Hertz vector, and this function

describes the magnetic surfaces of the stationary waves.

This provides a general, easy method to construct the

magnetic field lines. A series of examples of magnetic

surfaces are given.

In the second part, we formulate the generating func-

tion for the exact solution with periodicity 4T and we

describe the electromagnetic field in the resonators with a

separating wall, The components of the electric and mag-

netic field’s intensities, the magnetic field lines, and the

charge densities on the conducting toroidal surface and on

the separating wall are determined. Both the empty torus

and the coaxial torus are studied.

In the third part of the paper, some particular examples

are described.

II. THE STRUCTURE OF THE MAGNETIC FIELD OF

THE STATIONARY WAVES

The intensity of the magnetic field can be expressed

through the Hertz vector using the well-known relation

~= iCJCOPOcurl P. (1)

Writing the differential equations for the magnetic field

lines and inserting the field components from (1), we get,

for toroidal systems, the following equations:

dP
J d,+ ~(gy $

‘PP = ap
— df?+-(l -pcosf?)P+d@

a(ppo)
d(pPO) = # dp + a. dO+; (l–pcos6’)P4d@

ap
d[(l–pcoso)P+]= $ dp+

a(ppo)
~ dt3+~(l-pcos O)P@d@ (2)
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function ~, which is a solution of the scalar Hehnholtz

equation in toroidal coordinates. As it was shown in [1]

and [2], three different toroidal eigenmodes can be de-

fined through the Cartesian components of the Hertz

vector in the following way:

1) P:=ff,j P,! = Pza= o

2) P:=o P;=Azf p-b =()

3) P;= P;=O P2c=AJf.

The corresponding toroidal components are

1) P;=– A1fcos Qcosq) P;= A1fsin9cos@

P~=– A1fsin~

2) P$= –Azf cos 8 sin@ P/=A2f sin O sin @

P;=Azf cos~

3) P~=A3fsintl P;=A3f cos 9 p;=o (3)

(A,, A,, and A, are arbitrary constants).
The general form of the Hertz vector, which can be

obtained from a single generating function, is the super-

position of the defined three eigenvectors:

P= P”+ P~+P”. (4)

Inserting in (2), we get the followi~g system of equations:

af
Ppdlnf= ~ du

(5)

PP, P8, and P+ are the components of the vector P given

by (4), and u= A1x+A2y+Aqz where x=(1 –p cos 0)

.cos~, y=(l–pcos 0) sin+, andz=p sin O.

From (1) results that P cannot be represented as a

gradient of any function. Therefore, the only solution of

system (5) is the trivial one

dlnf=O

Fig. 1. Magnetic surfaces of toroidal electromagnetic mc)des fcr im
empty torus.
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Fig, 2, Magnetic surfaces of toroidal electromagnetic modes for

coaxial toroidal systems.

du=O. (6) ing surfaces. The magnetic surfaces are given in Fig. 1.for

Hence, the magnetic field lines are the intersections of the
the most characteristic cases if the generating function hlas

surfaces
the form [3]

j(p, 0, $) = constant (7)

and

u= A1x+Azy +A3z=constant. (8)

The generating function f(p, 0, ~) determines the mugnetic

surface~ of the s~ationaw electromagnetic waves. For the

different eigenmodes, the field lines are the intersections of

these surfaces with the x, y, or z = constant planes. The

eigenmodes can be defined also as a superposition of the

eigenmodes introduced by us, and, in this case, the mag-

netic field lines can be obtained again through the inter-

section of the magnetic surfaces (7) with the correspond-

f(p,$,+)=
ZV(kp)

VT-p Cos 0
cos (v8 – a) sin m4. (9)

Here, v is an integer, m =0, 1/2,1,2,3,. . . . a =0 or 17r/2,

and ZV(kp) is a cylindrical function. Fig. 1 corresponds to

the case of the empty torus. In this case, Zu(kp) is the

Bessel function Ju(kp). If we consider the case of a coaxial

torus, or of a torus containing an isotropic plasma, wh]~ch

is separated from the wall by means of a magrletic field,

the function ZV(kp) will be a superposition of the Bessel

and Neumann functions ZU(kp) = CIJv(kp) + C#v(k ,p).

The ~ = constant sections of the corresponding magnetic

surfaces are represented in Fig. 2.
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111. STATIONARY WAVES WITH PERIODICITY OF 4n

For toroidal systems with a periodicity of 47r (torus with

separating wall (See Fig. 3)), the possibility appears to get

an exact solution of the Maxwell equations for the

stationary waves. This solution can be obtained if we use

the following generating function for the construction of

the Hertz vector:

f=
Zp(kp)

V-
cos (M-a) sin ~. (lo)

This function is an exact solution of the scalar Hehnholtz

equation in toroidal coordinates. Here

k=$ (11)

where R is the major radius of the torus, a is the eigen-

frequency of the wave, and c is the speed of light. Here, it

is assumed that the toroidal coordinate p is equal to the

ratio r/R of the minor radius of a given point and the

major radius of the torus.

Using the generating function (10), we can construct the

toroidal components of the Hertz vector. We shall study

two types of normal modes:

1) P= ~(fsin OJ cos 0,0) (12)

2) P= F( –f cos /3 cos &fsin 6 cos ~, –jsin f#J).(13)

The third normal mode, corresponding to ~b (see (3))

differs from (13) only by a rotation through 7r/2 around

the axis of the torus.

A. The Intensi& of the Magnetic Field

Using (1), we get the following for the two types of

normal modes.

1) Normal Modes of the First Type:

Zp(kp)

‘“--m

Cos (M-a) Cos $ Cos ; (14)

ZU(kp)

‘e- ~-

cos (M – a) sin O cos f (15)

Be-
Zy(kp)

{
Cos(p(?- a)+$(l-pcose)

2~(-

1.COS [(v–l)O–c Y] sin ~

kZU+ ,(kp) +.

~
cos (M-– a) cos d sin ~. (16)

The magnetic field lines are the intersections of

ZV(kp)

~
cos (M – a) sin f = constant (17)

and the z = constant Plane.

2) Normal Modes of the Second Type:

BP-
vZV(kp) +sin (vO – a) sin @sin —

p~ 2

Zu(kp)— sin 0 cos (M-a) cos ~ (18)

2qm

“COS(M-a) sin @sin q
2

ZV(kp)— Cos e Cos (vO–a) Cos : (19)

2~M

B+- –
kZVq ,(kp) 4

~
sin O cos (M-a) cos @sin —

2

vZV(kp)— sin[(v– 1)0–a]cos@sin~.

p~

(20)

The magnetic field lines are the intersections of the

surfaces (17) with the x = constant plane. The structure of

the magnetic surfaces can be seen in Figs. 1 and 2.

B. The Boundaty Conditions

At the conducting surface, the normal component of

the magnetic field must vanish. This is realized if

ZV(kp) = O (21)

at the su~face of the torus. Simultaneously, the q5-compo-

nent of B must vanish at the conducting separating wall.

The generating function (10) was chosen in such a manner

that this is automatically fulfilled for the plane

()=0. (22)

C. The Dispersion Relation

1) Empty Toroidal Resonator with a Separating Wall:

Inside the empty torus, the electromagnetic field cannot

have any singularities. Therefore, the cylindrical function

ZU(kp) must be the Bessel function Jp(kp), and the condi-

tion (21) leads to

Jv(kpo) = o (23)

where p. is the inverse aspect ratio of the torus. Condition

(23) means that

h =2, I (24)

where j,, ~ is the first root of the Bessel function JV. Using

(1 1), (24), and the definition of the inverse aspect ratio

PO= ro/R, we get for the dispersion relation
r 1

(25)

L I

Therefore, the eigenfrequency of the resonator depends
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Fig. 3. Toroidal resonators with separating wall.

only on the minor radius of the torus. This is a direct

consequence of the existence of BP= O nodes at the

toroidal surface. For the associated wavelength in free

vacuum, we get ~ = 2rr0/jU,,.
2) Coaxial Toroidal Resonator with a Separating Wall:

In the case of the coaxial toroidal resonator, condition

(21) must be fulfilled for the outer torus (r= r]) and for

the inner torus (r= r2). We must take 2“ as a superposi-

tion of the Bessel and Neumann functions and for the

dispersion relation results:

(26)

where ay,, is the first root of the equation

‘(a)J(:)-N(:)J(a)=O ’27)

(The numerical values of jp,, and ay,, are given, e.g., in [4].)

D. The Intensity of the Electric Field

The intensity of the electric field can be determined by

the well-known relation

~= k2$+ grad div P. (28)

For the toroidal components of the intensity, we get the

following.

1) Normal Modes of the First Type:

Ep=–
v(v–l)ZV(kp)

sin [(v–l)o–a] sin ~

P2~ I–pcos@

vZV(kp)— sin [(v–1)/3-a] coso sin ~

2p{-

+ ‘Z’’+ ’(kp) (2-3p COS~)

2p~-

+.cos (vO–a) sin O sin —
2

+ vkZV + ,(kp) @sin (v9 —a) cos O sin —
2

(29)
pl/–pcos/3

+
vZU(kp) +sin [(v–1)0–a] sin~sin ~

2pl/-

V(v– l)zz,(kp)— cos [(v– I)&a] sin ~
p2vl–pcos G

_ kZV+,(kp) +COs(M – a) cos O sin –
p~ 2

kZV+ ,(kp)
+ sin2 /3 cos (vtl – a) sin ~- (30)

2{M~

+
Cos —

E+=–
2

2p{~

“ {vz,,(kp~sin [(.- 1)0-a]

+ kpZV+l(kp) cos (vO–– a) sin 0} (31)

2) Normal Modes of the Second Type:

3+
.cos (M-a) sin ~

+

[

Vzv ( kp) vZV(kp)— Co:s$

P’v’FEn 2p~W

v2ZV(kp)
—

1

cos [(v–1)0–a] cos+ sin $

p2 ~
..

( -3+l(kP) co~ ~_ k(v+ l) ZP+,(kp)

‘%=7
p=? )

+“cos (vO–a) cos 0 cos @sin —
2

kZV+ ~(kp)
+

34
cos (v8– a) sin ~

24(-

+ kvZV+ ,(kp) +cos [(v–1)13-a] cosy sin –
p=p Cos e 2
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E@= k2
ZV(kp) +

~
cos (v8 – a) sin O cos @sin —

2

3ZU(kp)
+

34
cos (.vO– a) sin 9 sin —

4~-
2

+
vZV(kp)

(

3+
sin (vO – a) sin —

2p~~
2

+COS [(p–l)@–a] sin/3 cos @sin ~
1

+
V(V– l) ZV(kp) 4sm [(v —l)&a] cos~sin —

2
p2vl–pcos9

kZU+ ,(kp)
— Cos (d? – a) Cos 8

2p~(l –p Cos 0)3

+. sin 0 cos + sin —
2

_ kvZU+ ,(kp)
sin (M – a) cos 9 cos + sin ~

p~

kZV~ ,(kp)— cos (vO – a) sin O cos @sin g
p~ 2

(33)

~ _ _ k2ZU(kp) +
+–

~
cos (vO– a) sin @sin ~

3ZV(kp) 34— Cos (M-a) Cos —

4~(W
2

vZP(kp)— Cos [(v–l)o–a] Cos+cos ;

2p4M

vZ,,(kp)

+ pm

cos [(v–1)0–a] sino sin Q
2

kZv+ ,(kp) @

‘m

cos (J@– a) cos 8 sin @sin —
2

kZP+ ~(kp)
+ Cos (Ve– a) Cos d Cos ; Cos +.

2~(-

(34)

E. The Charge Densi@ at the Toroidal Surface

The charge density at the toroidal surface is propor-

tional to the normal component of the electric field’s

intensity. Taking into account the boundary condition

(21), we get the following.
1) For the modes of the first type from (29),

2–3pcos0 4u- cos (vO– a) sin /3 sin —

2~W
2

+

&
4. (35)sin (vO – a) cos 0 sin ~

2) For the modes of the second type from (32),

2(v+ 1)–(2v+3)p COS ~

0-- m

+
.cos (vd–a) cos 8 cos +1 sin ~

3+

‘6

cos (vO – a) sin —
2

2V
+ +cos [(v—1)0—a] cos~sin —.

V’–pcoso 2

(36)

As can be seen, the charge density profile at the

toroidal surface does not depend on the cylindrical func-

tion. Therefore, it is the same for empty toroidal resona-

tors and for the coaxial toroidal resonators (or for resona-

tors containing plasma). In the case of the coaxial toroidal

resonators, (35) and (36) can also be used for the surface

of the inner torus, however, with the opposite sign.

The charge density on the separating wall is always

proportional to Eo.

IV. PARTICULAR EXAMPLES FOR TOROIDAL MODES

WITH PERIODICITY 4m

A. Normal Modes of the First Type

1) v =0: For the charge density on the surface of the

torus results:

2–3pcos6
u- +cos a sin 0 sin —. (37)

2~m
2

For the charge density on the separating wall, we get

from (31)

ZV+ ~(kp)

‘s”-- - Cosa “no” ’38)

It can be seen that only the a = O mode exists. (The

charge densities and the field intensities both vanish for

a = 7r/2.)

The charge distribution and the corresponding electric

and magnetic field lines are given for the empty torus in

Fig. 4. The magnetic field lines are the intersections of the
surfaces (1 – p cos /3) – 1\2ZO(kp) sin (4/2)= constant and

z = constant.

As it can be seen in the figure, there is a dipole

oscillation of the charge density on the separating wall.

2) v =1: For the charge densities on the surface of the

torus and on the separating wall results:

2–3pcos6
o- sin O cos (0– a) sin ~

2{(-

+
1

~

sin (0 – a) cos 8 sin ~ (39)



Fig. 5. Surface charge distribution and field structure of the normal

modes of the first type for v = 1 and a = O.
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Fig. 6. Surface charge distribution and field structure of the normal
modes of the first type for v = 1 and a = 7/2.

1
0 sep ‘-” —

2p/(m

. {kpZ,(kp) cos (0- a) sin 0- Z,(kp) sin a}. (40)

The distribution of the electric charges and the electric

field lines are represented in Fig. 5 for a = O and in Fig. 6

for a = Ir/2.

It can be seen that, for v =1, a = O, we have a quadru-

ple oscillation of charge on the separating wall. For this

case,, we have also represented the magnetic field lines.

B. Normal Modes of the Second Type

1) u =0: The charge densities are

2–3pcost?~_.. — +

6

cos a cos 6 cos $ sin —

I–pcosq3
2

+ P
cos a sin ~ (41)

~(l-pcos o)’

3 ZO(kp)
u

sep “w — —
Cos a

4~M

+ _ kZ,(kp)

2~(-

L

Cos a Cos (9. (42)

177

Fig. 7. Surface charge distribution and field structure of the normal
modes of the second type for v = O.

Fig. 8. Surface charge distribution and field structure of the normal
modes of the second type for v = 1.

Here, we have again only the mode a = O. The electric

charge densities and the field lines are represented in Fig.

7. There is again a dipole oscillation of the charge density

on the separating wall. The oscillation is now in the

direction of the major radius of the torus. Therefore, as a

consequence of the curvature of the torus, an asymmetry

in the dipole charge distribution appears.

2) v =1: For the charge densities, we have

4–5pcos9 +

“--m

cos (0– a) cos O cos @sin —
2

‘* sin + cos (0– a)

(43)

3Z1(kp)
u Scp, a=o - — Cos o

4&p Cos 8)5

Z,(kp) + kZ2(kp)— COS2e (44)

2p~~ 2~~

3Z,(kp)
0 sep, m = .Ir/2- — sin 0

4~M

kZ2(kp)
+ sin 29.

4~(1 –p Cos !9)3

(45)
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V. CONCLUSIONS of this paper.

The paper contains the solution of Maxwell’s equations

for a torus with a separating wall. We think that the great ~11

advantage of the described solution is that it is an exact

one for a complicated geometry, and no approximations

were used anywhere.

The special symmetry of the torus with a separating
[2]

wall does not allow the simple E and H classification of

the waves. Therefore, we had to introduce a different 131

classification, which was dictated by our mathematical [41

method.
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Characteristics and Optimum Operating
Parameters of a Gyrotron Traveling

Wave Amplifier

KWO RAY CHU, ADAM T. DROBOT, VICTOR L. GRANATSTEIN, AND J. LARRY SEFTOR

,4bstract-Characteristics and optimom operating parameters are de I. INTRODUCTION
terruimxl for a new type of high-power high-efficiency generator of mini- ~

meter waves known as a gyrotron travefiuz wave aomtiler, In the exarde ~ HE GYROTRON is a new type of microwave device

consider~ wave ampfifieation results from the interaction of a WI

wavegufde mode with the fundamental cyclotron harmonic of an electron

beam. The parameter optimization involves tfre determination of tbe point

of maximum device efficiency w a fuoction of beam density, beam energy,

beam positioning, and external magnetic field for the output power re-

quired. An armfytical linear theory and a nomerieaf simulation code form

the basis of theoretical calculations. As a resaft of tbe extensive survey in

parameter space, the peak efficiency in the beam frame has been formal to

exceed 70 percent, TM result has been apptied to the specific design of a

35-GHs ampfMer witfr outpnt power -340 kW, a power gain of 2 dB/cw

and a laboratory frame efficiency of 51 percent.
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1 employing the electron cyclotron maser mechanism.

It ideally consists of an ensemble of monoenergetic elec-

trons following helical trajectories around the lines of an

axial magnetic field inside a fast wave structure such as a

metallic tube or waveguide. The physical mechanism re-

sponsible for the radiation in the gyrotrons has its origin

in a relativistic effect. Initially, the phases of the electrons

in their cyclotron orbits are random, but phase bunching

can occur because of the dependence of electron

cyclotron frequency on the relativistic electron mass.
Those electrons that lose energy to the wave become

lighter, rotate faster, and, hence, accumulate phase lead,

while those electrons that gain energy from the wave

become heavier, rotate slower, and accumulate phase lag.

This can result in phase bunching such that the electrons

radiate coherently and amplify the wave. Energy transfer

from the electrons to the wave is optimized when a – IczoZO

– si2C>0, where co, k=, UZO,s, and QC, are, respectively, the

wave frequency, axial wave number, axial electron veloc-
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