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dB/m. But calcite is preferable since the net gain (9.9857
dB/m) is better than with titania (7.4596 dB/m). This is
s0 because it can be shown that the loss factor is mini-
mized around € =3, a fact true for isotropic case also [2].
It infers that a material with €~3 and a=>~2 is most
suitable for best output.
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Toroidal Resonator with a Conducting
Separating Wall

RUDOLF DEUTSCH

Abstract—The exact solution of Maxwell’s equations for electromag-
netic waves in toroidal resonators with a separating wall was obtained. The
components of the intensities of the electric and magnetic fields, the
charge densities on the toroidal surface and on the separating wall, the
magnetic field lines, and the dispersion relation were determined. Both the
empty torus and the coaxial torus were studied. A general method to
determine in an easy way the magnetic field lines from the structure of the
Hertz vector is given.

I. INTRODUCTION

T WAS RECENTLY shown [1]-[3] that the vectorial

Helmholtz equation for electromagnetic waves in
toroidal coordinates can be reduced to the scalar Helm-
holtz equation, and solutions of this equation for some
cases important in electronics and in plasma physics were
obtained. It is possible to get an exact solution with the
periodicity of 47 [2]. This corresponds to an empty or
coaxial torus containing a conducting separating wall
(Fig. 3). In this paper, we shall study this solution in

detail.
In the first part of the paper, we show that it is possible

to introduce a generating function, related to the Carte-
sian components of the Hertz vector, and this function
describes the magnetic surfaces of the stationary waves,

This provides a general, easy method to construct the
magnetic field lines. A series of examples of magnetic
surfaces are given.

In the second part, we formulate the generating func-
tion for the exact solution with periodicity 47 and we
describe the electromagnetic field in the resonators with a
separating wall. The components of the electric and mag-
netic field's intensities, the magnetic field lines, and the
charge densities on the conducting toroidal surface and on
the separating wall are determined. Both the empty torus
and the coaxial torus are studied.

In the third part of the paper, some particular examples
are described.

II. THE STRUCTURE OF THE MAGNETIC FIELD OF
THE STATIONARY WAVES

The intensity of the magnetic field can be expressed
through the Hertz vector using the well-known relation

()
Writing the differential equations for the magnetic field

lines and inserting the field components from (1), we get,
for toroidal systems, the following equations:

B=iwey g, curl P.

or d(pPy) 9
_ P 4 = (1—
dP,= % dp+ % d6 + 3 (1—pcos @)P, do
aP d(pP a
d(pP0)=7370 dp+ (206’) do + -@(l—p CcOs 0)P¢ do
apP a(pP
d[(1—p cos 0)P¢]=-5¢Tp dp+ (g;) a9+ %(l~p cos #) P, do 2

Manuscript received October 11, 1977; revised April 21, 1978.
The author is with the Institut fur Theoretische Physik, Universitat
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where p, 4, and ¢ are the toroidal coordinates.
In the case of the electromagnetic waves, the compo-
nents of the Hertz vector can be expressed through a
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function f, which is a solution of the scalar Helmholtz
equation 1n toroidal coordinates. As it was shown in [1]
and [2], three different toroidal eigenmodes can be de-
fined through the Cartesian components of the Hertz
vector in the following way:

1) Pi=4,f P!=PI=0
2) PP=0  PP=4,f P'=0
3) Pf=P;=0  Pi=A,f.

The corresponding toroidal components are

1) Pj=—A,fcos8cos ¢ Pi=A,fsin6 cos ¢
Pi=—A,fsing

2) Ppb= — A, fcos fsin ¢

P)=A,fcos ¢

Pi=A;fcos b

Py=A,fsinf sin ¢

3) Pp=A;fsinb P;=0

¢

3)
(A, 4,, and A, are arbitrary constants).

The general form of the Hertz vector, which can be
obtained from a single generating function, is the super-
position of the defined three eigenvectors:

P= P+ P*+ P, (4)
Inserting in (2), we get the following system of equations:

0
delnf=3£ du

_1y

PydlIn f= >0 du (5)
_ 1 of

P,dIn f= T=pcosd 3¢ du.

P,, Py, and P, are the components of the vector P given
by (4), and u=A,x+A,y+ A,z where x=(1—p cos §)
-cos ¢, y=(1—p cos f) sin ¢, and z=p sin §.

From (1) results that P cannot be represented as a
gradient of any function. Therefore, the only solution of
system (5) is the trivial one

dlnf=0

du=0. (6)

Hence, the magnetic field lines are the intersections of the
surfaces

f(p,0,9)=constant

™

and

u=A,x+ A,y + Ayz=constant. (8)
The generating function f(p.0,$) determines the magnetic
surfaces of the stationary electromuagnetic waves. For the
different eigenmodes, the field lines are the intersections of
these surfaces with the x, y, or z=constant planes. The
eigenmodes can be defined also as a superposition of the
eigenmodes introduced by us, and, in this case, the mag-
netic field lines can be obtained again through the inter-
section of the magnetic surfaces (7) with the correspond-

Fig. 1. Magnetic surfaces of toroidal electromagnetic modes for an

empty torus.

Fig. 2. Magnetic surfaces of toroidal electromagnetic modes for
coaxial toroidal systems.

ing surfaces. The magnetic surfaces are given in Fig. 1 for
the most characteristic cases if the generating function has
the form [3]

Z,(kp)

COSs

\/lv~p cos 0

Here, v is an integer, m=0,1/2,1,2,3,---,a=0 or 7 /2,
and Z,(kp) is a cylindrical function. Fig. 1 corresponds to
the case of the empty torus. In this case, Z (kp) is the
Bessel function J,(kp). If we consider the case of a coaxial
torus, or of a torus containing an isotropic plasma, which
is separated from the wall by means of a magnetic field,
the function Z (kp) will be a superposition of the Bessel
and Neumann functions Z (kp)= C,J (kp)+ C,N, (ko).
The ¢=constant sections of the corresponding magnetic
surfaces are represented in Fig. 2.

f(p.0.¢)= (v — ) sinmo.  (9)




174

I1I. STATIONARY WAVES WITH PERIODICITY OF 47

For toroidal systems with a periodicity of 4= (torus with
separating wall (See Fig. 3)), the possibility appears to get
an exact solution of the Maxwell equations for the
stationary waves. This solution can be obtained if we use
the following generating function for the construction of
the Hertz vector:

f= Z,(kp) cos (v8 — a) sin ? (10)

V1I—pcosé 2

This function is an exact solution of the scalar Helmholtz
equation in toroidal coordinates. Here

k=R
c

(11)

where R is the major radius of the torus, w is the eigen-
frequency of the wave, and c¢ is the speed of light. Here, it
is assumed that the toroidal coordinate p is equal to the
ratio r/ R of the minor radius of a given point and the
major radius of the torus.

Using the generating function (10), we can construct the
toroidal components of the Hertz vector. We shall study
two types of normal modes:

1) P=P(fsin#,f cos 8,0) (12)
2) P=P(—fcos 8 cos ¢,fsin 8 cos ¢, —f sin ¢). (13)
The third normal mode, corresponding to P? (see (3))
differs from (13) only by a rotation through = /2 around
the axis of the torus.
A. The Intensity of the Magnetic Field

Using (1), we get the following for the two types of
normal modes.
1) Normal Modes of the First Type:
Z,(kp)

j ; S AN A

? 3
(1—pcos @)

Z(k
B9~——"—(—L)——— cos (v8— a) sin 8 cos % (15)

V(1 —p cos 9)*
Z,(kp)
(1—p cos9)’

©

cos (v6— a) cos § cos 3 (14)

B,~ {cos (vh—a)+ %’i(l-p cos 8)
2

Ccos [(V—I)H—a]} sin %

kZ,, (k
__KZ,.,(kp) cos (v — a) cos @ sin % (16)
1—pcosé

The magnetic field lines are the intersections of

Z,(kp)

V1—pcosf

and the z =constant plane.

¢

cos (v — a) sin > =constant

(17)
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2) Normal Modes of the Second Type:

vZ,(kp) . : .
B ~————"—— sin (0 —a) sin ¢ sin +
" oVi-pcost 2
Z(k
(ko) sin # cos (v6 — a) cos 922 (18)
2y/(1—p cos )%
B vZ,(kp) kZ,,(kp)
~ -
pV1i-pcosf® V1-pcosh
¢

-cos (¥4 — a) sin ¢ sin )
Z,(kp)
2\/(1—p cos )

cos # cos (v — ) cos 37¢ (19)

sin @ cos (vf — a) cos ¢ sin L4

2

kZ, 1 1(kp)

By~~

V1—pcosé
vZ,(kp)

pV1—pcosé

sin [(»—1)#—a] cos ¢ sin %

(20)

The magnetic field lines are the intersections of the
surfaces (17) with the x =constant plane. The structure of
the magnetic surfaces can be seen in Figs. 1 and 2.

B. The Boundary Conditions

At the conducting surface, the normal component of
the magnetic field must vanish. This is realized if

Z,(kp)=0 (21)

at the surface of the torus. Simultaneously, the ¢-compo-
nent of B must vanish at the conducting separating wall.
The generating function (10) was chosen in such a manner
that this is automatically fulfilled for the plane

¢ =0. (22)

C. The Dispersion Relation

1) Empty Toroidal Resonator with a Separating Wall:
Inside the empty torus, the electromagnetic field cannot
have any singularities. Therefore, the cylindrical function
Z (kp) must be the Bessel function J,(kp), and the condi-
tion (21) leads to

where py is the inverse aspect ratio of the torus. Condition
(23) means that

kp, =jv,l (24)
where j, | is the first root of the Bessel function J,. Using
(11), (24), and the definition of the inverse aspect ratio
po=Tro/ R, we get for the dispersion relation

(25)

g/

W, = — .
v v, 1
7o

Therefore, the eigenfrequency of the resonator depends
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Fig. 3. Toroidal resonators with separating wall.

only on the minor radius of the torus. This is a direct
consequence of the existence of B,=0 nodes at the
toroidal surface. For the associated wavelength in free
vacuum, we get A, =2mr,/j, ;.

2) Coaxial Toroidal Resonator with a Separating Wall:
In the case of the coaxial toroidal resonator, condition
(21) must be fulfilled for the outer torus (r=r,) and for
the inner torus (r=r,). We must take Z, as a superposi-
tion of the Bessel and Neumann functions and for the
dispersion relation results:

w,=— av, 1 (26)

where a, | is the first root of the equation
ra ra
M@ )= w2 a0,
b P

(The numerical values of j, | and g, | are given, e.g., in [4].)

(27)

D. The Intensity of the Electric Field

The intensity of the electric field can be determined by

the well-known relation
E= kP +grad div P. (28)

For the toroidal components of the intensity, we get the
following.
1) Normal Modes of the First Type:

g =202 DZke)

g p2V1i—pcosf
vZ,(kp) ¢

- ( = sin [(»—1)0—a] cos 8 sin -
2p\/(1—p cos )

2
+ kZ;+l(kp)
2p\/(1—p cos 0)3
¢

-cos (v8 — o) sin 4 sin >

[(»—1)p—a] sin &

(2—3p cos 8)

+ VkZV+l(kp) ¢

sin (»d — a) cos § sin = (29)
pV1i—pcos¥

2
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k*Z, (ko) ¢
—————"— cos (v8 — a) cos f sin —
V1—pcosé 2

E,=

. vZ,(kp)
2p\(1—p cos §)’

- VAR o - 1) o] sin

sin [(»—1)8—a] sin @ sin —(2?—

pz\/l —p cos @ 2
kZV+1(kp) q5
- —————"— co0s (v#—a) cos # sin =
pV1—pcosb 2
kZ,, (K
+ —i—”“i(—’ﬁ_— sin (v0 — a) sin 6 sin L4
pV1—pcosb 2
kZ,, (ko) . ‘
+ o — sin? 0 cos (v — a) sin @ (30)
2\/(1 —pcos f)° 2
cos %
E,=~
2py(1~p cos 8)’
{vZ,(kp) sin [(v—1)8—a]
+kpZ,, (ko) cos (v~ a) sin 8} (31)
2) Normal Modes of the Second Type:
Z(k Z,(k
Ep=_(§ A I 7 A () \,
(1-p cos 8) 2p\/(1—p cos 9)> /
-cos (v — a) sin %4_’_
k Z
+[ vZ(ko)  vZlk)
p*V1-pcosf  20\/(1-p cosf)’
27 (k
- —1}——4—’—2—— cos [(r—1)f—a] cos ¢ sin g
p*V1—=pcos @ =
. ( k_Zinlke) oy Kot 1>z,+l<fp))
(1—p cos §)° pV1-pcos 6
-cos (8 — a) cos 8 cos ¢ sin %
kZ,. (k
+ - 1(ko) cos (v0— a) sin %‘2
2\/(1 —pcos f)’
kvZ, (K
bz, (kp) cos [ (v—1)§—a] cos ¢ sin %

pV1—pcosd
(32)
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Z,(kp) cos (v0 — ) sin 8 cos ¢ sin Ld

VI—pcos8 2

32, (ko) cos (»0 — a) sin 4 sin 3

+
4\/(1 ~pcos ) 2
vZ, (ko) {sin (v8 — o) sin 3

* 2
2p\/(1—p cos 9)*

+cos [(r—1)f—«] sin 6 cos ¢ sin % }
L 2e=1)Z (ko)

0’V 1-pcoséd

kZ,,_,.](k,O)

Zp\/(l —pcos )

-sin # cos ¢ sin %
Z, (k
_ bz, ilkp) sin (vf — ) cos  cos ¢ sin ¢

pV1—pcost 2

kZ,. (k
- 1(kp) cos (v8 — ) sin 8 cos ¢ sin d

pV1i—pcosd 2
(33)

E,= k>

sin [(v—1)§—a] cos ¢ sin %

cos (v8—a) cos 8

Kz, (k
E,=- _KZke) cos (v8 — a) sin ¢ sin %
Vi—pcosé
- 32,(ke) cos (v8 — a) cos —323
4(1—p cos )
- vZ, (ko) cos [(v—1)f—a] cos ¢ cos %
2p\/(1—p cos 8)°
k
b 2K s (- 1) o] sin & sin 2
p\/(1—p cos )
ka+1(kp)

———==——L— cos (v§— «) cos # sin ¢ sin %
V(1 —p cos )

kZ . (k
,+1(kp) cos (8 — a) cos 8 cos L4 coS ¢.

\/(l—p cos 8)° 2

E. The Charge Density at the Toroidal Surface

The charge density at the toroidal surface is propor-
tional to the normal component of the electric field’s
intensity. Taking into account the boundary condition
(21), we get the following.

1) For the modes of the first type from (29),

2= 3p cos b cos (v8 — a) sin § sin L4

2\/(1—p cos f) 2

+ —————— sin (v0—a) cos B sin % (39)
1—pcosf

+
2

(34)

2) For the modes of the second type from (32),
o — 2(v+1)—(2v+3)p cos §

(1—pcos 8)
-cos (v8— a) cos # cos ¢ sin %
+ p cos (v8 — ) sin%;5
\/(l—pcoslﬁ?)3
2v .
+——————cos [(»—1)f—a] cos ¢ sin =.
V1i—pcosé [ ] 2

(36)

As can be seen, the charge density profile at the
toroidal surface does not depend on the cylindrical func-
tion. Therefore, it is the same for empty toroidal resona-
tors and for the coaxial toroidal resonators (or for resona-
tors containing plasma). In the case of the coaxial toroidal
resonators, (35) and (36) can also be used for the surface
of the inner torus, however, with the opposite sign.

The charge density on the separating wall is always
proportional to E,,.

IV. PARTICULAR ExaMPLES FOR TOROIDAL MODES
WITH PERIODICITY 47
A. Normal Modes of the First Type

1) y=0: For the charge density on the surface of the
torus results:

o~ 2—3pcosh cos « sin # sin %

2l peost)

For the charge density on the separating wall, we get
from (31)

(37)

ZV l(kp) :
sep~ — ———————— c0s a sin 6.

(38)
\/(1 —pcos )’

o)

It can be seen that only the =0 mode exists. (The
charge densities and the field intensities both vanish for
a=u/2.)

The charge distribution and the corresponding electric
and magnetic field lines are given for the empty torus in
Fig. 4. The magnetic field lines are the intersections of the
surfaces (1—p cos 8) 1/2Z,(kp) sin (¢/2)=constant and
z = constant,

As it can be seen in the figure, there is a dipole
oscillation of the charge density on the separating wall.

2) v=1. For the charge densities on the surface of the
torus and on the separating wall results:

g~ 2-3pcosh sin # cos (0 — «) sin%
2\/(1—,0 cos 0)’
i . b
+ —————sin(f#—a)cosfsin = (39)

V1—pcosé 2
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Fig. 4. Surface charge distribution and field structure of the normal

modes of the first type for »y=0.

Fig. 5. Surface charge distribution and field structure of the normal
modes of the first type forv=1and a=0.
Fig. 6. Surface charge distribution and field structure of the normal
modes of the first type forv=1and a=x/2.
1
Tsep™

20\(1—p cos 8)’
{kpZ,(kp) cos (8 —a) sin §— Z,(kp) sin a}. (40)

The distribution of the electric charges and the electric
field lines are represented in Fig. 5 for «=0 and in Fig. 6
fora=mw/2.

It can be seen that, for y=1, a=0, we have a quadru-
pole oscillation of charge on the separating wall. For this
case, we have also represented the magnetic field lines.

B. Normal Modes of the Second Type

1) v=0: The charge densities are

e — 2230080 i cos B cos ¢ sin %
\/&—p cos )
+ p cos a sin 37¢ (41)
(1-p cos §)’
3Z,(k
Ogep™ olkp) cos «
4\(1—p cos 8)°
kZ\(kp)

cos a cos 0. (42)
2\/(1 —pcos 0)

Fig. 7. Surface charge distribution and field structure of the normal

modes of the second type for »=0.

Fig. 8. Surface charge distribution and field structure of the normal
modes of the second type for r=1.

Here, we have again only the mode a=0. The electric
charge densities and the field lines are represented in Fig.
7. There is again a dipole oscillation of the charge density
on the separating wall. The oscillation is now in the
direction of the major radius of the torus. Therefore, as a
consequence of the curvature of the torus, an asymmetry
in the dipole charge distribution appears.

2) v=1: For the charge densities, we have

o~— _4-%pcosh cos (8 — a) cos 8 cos ¢ sin %
(1—p cos )
+—>F  sin —3-2? cos (6 —a)
V(1 —p cos )y
2 cos o . ¢
+ ——————— cos ¢ sin = (43)
V1—pcosf 2
o 3Z,(ke) cos 8
sep,a=0"""" —
4/(1—p cos 9)’
Z(k V4
. l( p) + k 2(kp) COSZ 0 (44)
2py(1—p cos 9) 2y/(1—p cos 0)*
3Z,(k
Ogep,amm/2™~ 1(kp) sin f
4\/(1—p cos 8)
kZ.(k
A0 G e, (45)

+
H/(1—p cos 9)*
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The charge densities and the electric field lines are
represented in Fig. 8. As can be seen, in the case of the
second-type modes, we also get a quasi-quadrupole oscil-
lation on the separating wall. Here, again, the influence of
the curvature of the torus appears.

V. CONCLUSIONS

The paper contains the solution of Maxwell’s equations
for a torus with a separating wall. We think that the great
advantage of the described solution is that it is an exact
one for a complicated geometry, and no approximations
were used anywhere.

The special symmetry of the torus with a separating
wall does not allow the simple £ and H classification of
the waves. Therefore, we had to introduce a different
classification, which was dictated by our mathematical
method.
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Characteristics and Optimum Operating
Parameters of a Gyrotron Traveling
Wave Amplifier

KWO RAY CHU, ADAM T. DROBOT, VICTOR L. GRANATSTEIN, anp J. LARRY SEFTOR

Abstract—Characteristics and optimum operating parameters are de-
termined for a new type of high-power high-efficiency generator of milli-
meter waves known as a gyrotron traveling wave amplifier. In the example
considered, wave amplification results from the interaction of a TEy
waveguide mode with the fundamental cyclotron harmonic of an electron
beam. The parameter optimization involves the determination of the point
of maximum device efficiency as a function of beam density, beam energy,
beam positioning, and external magnetic field for the output power re-
quired. An analytical linear theory and a numerical simulation code form
the basis of theoretical calculations. As a result of the extensive survey in
parameter space, the peak efficiency in the beam frame has been found to
exceed 70 percent, This result has been applied to the specific design of a
35-GHz amplifier with output power ~340 kW, a power gain of 2 dB/cm,
and a laboratory frame efficiency of 51 percent.
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1. INTRODUCTION

' HE GYROTRON is a new type of microwave device

employing the electron cyclotron maser mechanism.
It ideally consists of an ensemble of monoenergetic elec-
trons following helical trajectories around the lines of an
axial magnetic field inside a fast wave structure such as a
metallic tube or waveguide. The physical mechanism re-
sponsible for the radiation in the gyrotrons has its origin
in a relativistic effect. Initially, the phases of the electrons
in their cyclotron orbits are random, but phase bunching
can occur because of the dependence of electron
cyclotron frequency on the relativistic electron mass.
Those electrons that lose energy to the wave become
lighter, rotate faster, and, hence, accumulate phase lead,
while those electrons that gain energy from the wave
become heavier, rotate slower, and accumulate phase lag.
This can result in phase bunching such that the electrons
radiate coherently and amplify the wave. Energy transfer
from the electrons to the wave is optimized when w— k&, v,
—s8, >0, where w, k,, v,4, 5, and €, are, respectively, the
wave frequency, axial wave number, axial electron veloc-
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